πŸ“‹ Model Description


datasets:
  • HuggingFaceH4/ultrachat200k
  • allenai/ultrafeedbackbinarizedcleaned
  • meta-math/MetaMathQA
  • WizardLM/WizardLMevolinstructV2196k
  • openchat/openchatsharegpt4dataset
  • LDJnr/Capybara
  • Intel/orcadpo_pairs
  • hkust-nlp/deita-10k-v0
  • teknium/OpenHermes-2.5

language:

  • en

tags:
  • causal-lm

extragatedfields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
license: other

This is StableLM 2 Chat 1.6B, quantized with the help of imatrix so it could offer better performance for being quantized, and have quantization levels available for lower-memory devices to run. Kalomaze's "groupsmerged.txt" was used for the importance matrix, with context set to 4,096 (the context length according to their paper).

Here's a chart that provides an approximation of the HellaSwag score (out of 1,000 tasks). Thanks to the randomization of tasks, it may be slightly unprecise:




QuantizationHellaSwag
IQ1_S35.4%
IQ1_M38.7%
IQ2_XXS51.2%
IQ2_XS51.8%
IQ2_S56.8%
IQ2_M59.3%
Q2KS55.2%
Q2_K59.0%
IQ3_XXS60.8%
Q4_064.0%
Q4KM66.0%
Q5KM65.8%

Original model card below.


StableLM 2 Chat 1.6B

Model Description

Stable LM 2 Chat 1.6B is a 1.6 billion parameter instruction tuned language model inspired by HugginFaceH4's Zephyr 7B training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing Direct Preference Optimization (DPO).

Usage

StableLM 2 1.6B Chat uses the following ChatML format:

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.frompretrained('stabilityai/stablelm-2-16b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-1_6b-chat',
device_map="auto",
)

prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.applychattemplate(
prompt,
addgenerationprompt=True,
return_tensors='pt'
)

tokens = model.generate(
inputs.to(model.device),
maxnewtokens=100,
temperature=0.7,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skipspecialtokens=False)

print(output)

Model Details

Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the HuggingFace Hub:

  1. SFT Datasets

  • HuggingFaceH4/ultrachat200k
  • meta-math/MetaMathQA
  • WizardLM/WizardLMevolinstructV2196k
  • Open-Orca/SlimOrca
  • openchat/openchatsharegpt4_dataset
  • LDJnr/Capybara
  • hkust-nlp/deita-10k-v0
  • teknium/OpenHermes-2.5

  1. Preference Datasets:
  • allenai/ultrafeedbackbinarizedcleaned
  • Intel/orcadpopairs
  • argilla/dpo-mix-7k

Performance

MT-Bench

ModelSizeMT-Bench
Mistral-7B-Instruct-v0.27B7.61
Llama2-Chat70B6.86
stablelm-zephyr-3b3B6.64
MPT-30B-Chat30B6.39
stablelm-2-1_6b-chat1.6B5.83
stablelm-2-zephyr-1.6b1.6B5.42
Falcon-40B-Instruct40B5.17
Qwen-1.8B-Chat1.8B4.95
dolphin-2.6-phi-22.7B4.93
phi-22.7B4.29
TinyLlama-1.1B-Chat-v1.01.1B3.46

OpenLLM Leaderboard

ModelSizeAverageARC Challenge (accnorm)HellaSwag (accnorm)MMLU (acc_norm)TruthfulQA (mc2)Winogrande (acc)Gsm8k (acc)
microsoft/phi-22.7B61.32%61.09%75.11%58.11%44.47%74.35%54.81%
stabilityai/stablelm-2-1_6b-chat1.6B50.80%43.94%69.22%41.59%46.52%64.56%38.96%
stabilityai/stablelm-2-zephyr-1_6b1.6B49.89%43.69%69.34%41.85%45.21%64.09%35.18%
microsoft/phi-1_51.3B47.69%52.90%63.79%43.89%40.89%72.22%12.43%
stabilityai/stablelm-2-1_6b1.6B45.54%43.43%70.49%38.93%36.65%65.90%17.82%
mosaicml/mpt-7b7B44.28%47.70%77.57%30.80%33.40%72.14%4.02%
KnutJaegersberg/Qwen-1_8B-Llamaified*1.8B44.75%37.71%58.87%46.37%39.41%61.72%24.41%
openlm-research/openllama3b_v23B40.28%40.27%71.60%27.12%34.78%67.01%0.91%
iiuae/falcon-rw-1b1B37.07%35.07%63.56%25.28%35.96%62.04%0.53%
TinyLlama/TinyLlama-1.1B-3T1.1B36.40%33.79%60.31%26.04%37.32%59.51%1.44%

Use and Limitations

Intended Use

The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about safety and limitations below.

Limitations and Bias

​ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.

Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.

How to Cite

@misc{StableLM-2-1.6B,
      url={https://huggingface.co/stabilityai/stablelm-2-1.6b},
      title={Stable LM 2 1.6B},
      author={Stability AI Language Team}
}

πŸ“‚ GGUF File List

πŸ“ Filename πŸ“¦ Size ⚑ Download
stablelm-2-1_6b-chat.IQ1_M.imx.gguf
LFS
478.89 MB Download
stablelm-2-1_6b-chat.IQ1_S.imx.gguf
LFS
456.61 MB Download
stablelm-2-1_6b-chat.IQ2_M.imx.gguf
LFS Q2
624.99 MB Download
stablelm-2-1_6b-chat.IQ2_S.imx.gguf
LFS Q2
595.27 MB Download
stablelm-2-1_6b-chat.IQ2_XS.imx.gguf
LFS Q2
548.76 MB Download
stablelm-2-1_6b-chat.IQ2_XXS.imx.gguf
LFS Q2
516.04 MB Download
stablelm-2-1_6b-chat.IQ3_M.imx.gguf
LFS Q3
784.92 MB Download
stablelm-2-1_6b-chat.IQ3_S.imx.gguf
LFS Q3
755.04 MB Download
stablelm-2-1_6b-chat.IQ3_XS.imx.gguf
LFS Q3
727.47 MB Download
stablelm-2-1_6b-chat.IQ3_XXS.imx.gguf
LFS Q3
666.38 MB Download
stablelm-2-1_6b-chat.IQ4_NL.imx.gguf
LFS Q4
937.25 MB Download
stablelm-2-1_6b-chat.IQ4_XS.imx.gguf
LFS Q4
894.38 MB Download
stablelm-2-1_6b-chat.Q2_K_S.imx.gguf
LFS Q2
623.43 MB Download
stablelm-2-1_6b-chat.Q3_K_M.imx.gguf
LFS Q3
817.97 MB Download
stablelm-2-1_6b-chat.Q3_K_S.imx.gguf
LFS Q3
755.04 MB Download
stablelm-2-1_6b-chat.Q4_0.imx.gguf
Recommended LFS Q4
939.32 MB Download
stablelm-2-1_6b-chat.Q4_K_M.imx.gguf
LFS Q4
983.66 MB Download
stablelm-2-1_6b-chat.Q5_0.imx.gguf
LFS Q5
1.08 GB Download
stablelm-2-1_6b-chat.Q5_K_M.imx.gguf
LFS Q5
1.11 GB Download