πŸ“‹ Model Description


library_name: transformers
license: apache-2.0
language:

  • en

datasets:
  • HuggingFaceTB/smollm-corpus


QuantFactory/SmolLM-135M-GGUF

This is quantized version of HuggingFaceTB/SmolLM-135M created using llama.cpp

Original Model Card

SmolLM


SmolLM

Table of Contents

  1. Model Summary
  2. Limitations
  3. Training
  4. License
  5. Citation

Model Summary

SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are built on Cosmo-Corpus, a meticulously curated high-quality training dataset. Cosmo-Corpus includes Cosmopedia v2 (28B tokens of synthetic textbooks and stories generated by Mixtral), Python-Edu (4B tokens of educational Python samples from The Stack), and FineWeb-Edu (220B tokens of deduplicated educational web samples from FineWeb). SmolLM models have shown promising results when compared to other models in their size categories across various benchmarks testing common sense reasoning and world knowledge. For detailed information on training, benchmarks and performance, please refer to our full blog post.

This is the SmolLM-135M

Generation

pip install transformers

#### Running the model on CPU/GPU/multi GPU

  • Using full precision

# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM-135M"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

for multiple GPUs install accelerate and do model = AutoModelForCausalLM.frompretrained(checkpoint, devicemap="auto")


model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("def printhelloworld():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

>>> print(f"Memory footprint: {model.getmemoryfootprint() / 1e6:.2f} MB")
Memory footprint: 12624.81 MB

  • Using torch.bfloat16

# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
checkpoint = "HuggingFaceTB/SmolLM-135M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

for fp16 use torch_dtype=torch.float16 instead


model = AutoModelForCausalLM.frompretrained(checkpoint, devicemap="auto", torch_dtype=torch.bfloat16)
inputs = tokenizer.encode("def printhelloworld():", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

>>> print(f"Memory footprint: {model.getmemoryfootprint() / 1e6:.2f} MB")
Memory footprint: 269.03 MB

#### Quantized Versions through bitsandbytes

  • Using 8-bit precision (int8)

# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

to use 4bit use loadin4bit=True instead

quantizationconfig = BitsAndBytesConfig(loadin_8bit=True) checkpoint = "HuggingFaceTB/SmolLM-135M" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.frompretrained(checkpoint, quantizationconfig=quantization_config) inputs = tokenizer.encode("def printhelloworld():", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0]))
>>> print(f"Memory footprint: {model.getmemoryfootprint() / 1e6:.2f} MB")

loadin8bit

Memory footprint: 162.87 MB

loadin4bit

>>> print(f"Memory footprint: {model.getmemoryfootprint() / 1e6:.2f} MB") Memory footprint: 109.78 MB

Limitations

While SmolLM models have been trained on a diverse dataset including educational content and synthetic texts, they have limitations. The models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. For a more comprehensive discussion of the models' capabilities and limitations, please refer to our full blog post..

This repository contains a converted version of our latest trained model. We've noticed a small performance difference between this converted checkpoint (transformers) and the original (nanotron). We're currently working to resolve this issue.

Training

Model

  • Architecture: For architecture detail, see the blog post.
  • Pretraining steps: 600k
  • Pretraining tokens: 600B
  • Precision: bfloat16

Hardware

  • GPUs: 64 H100

Software

License

Apache 2.0

Citation

@misc{allal2024SmolLM,
      title={SmolLM - blazingly fast and remarkably powerful}, 
      author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Leandro von Werra and Thomas Wolf},
      year={2024},
}

πŸ“‚ GGUF File List

πŸ“ Filename πŸ“¦ Size ⚑ Download
SmolLM-135M.Q2_K.gguf
LFS Q2
84.12 MB Download
SmolLM-135M.Q3_K_L.gguf
LFS Q3
93.01 MB Download
SmolLM-135M.Q3_K_M.gguf
LFS Q3
89.18 MB Download
SmolLM-135M.Q3_K_S.gguf
LFS Q3
84.12 MB Download
SmolLM-135M.Q4_0.gguf
Recommended LFS Q4
87.48 MB Download
SmolLM-135M.Q4_1.gguf
LFS Q4
93.81 MB Download
SmolLM-135M.Q4_K_M.gguf
LFS Q4
100.57 MB Download
SmolLM-135M.Q4_K_S.gguf
LFS Q4
97.31 MB Download
SmolLM-135M.Q5_0.gguf
LFS Q5
100.13 MB Download
SmolLM-135M.Q5_1.gguf
LFS Q5
106.46 MB Download
SmolLM-135M.Q5_K_M.gguf
LFS Q5
106.91 MB Download
SmolLM-135M.Q5_K_S.gguf
LFS Q5
104.88 MB Download
SmolLM-135M.Q6_K.gguf
LFS Q6
131.97 MB Download
SmolLM-135M.Q8_0.gguf
LFS Q8
138.1 MB Download