📋 Model Description


basemodel: jphme/emgermanmistralv01 inference: false language:
  • de
library_name: transformers license: apache-2.0 model_creator: Jan Philipp Harries model_name: EM German Mistral v01 model_type: mistral pipeline_tag: text-generation prompt_template: 'Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:

'
quantized_by: TheBloke
tags:

  • pytorch
  • german
  • deutsch
  • mistral





TheBlokeAI


TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)




EM German Mistral v01 - GGUF


Description

This repo contains GGUF format model files for Jan Philipp Harries's EM German Mistral v01.



About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.



Repositories available


Prompt template: EmGerman

Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:


Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGMLTYPEQ2K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGMLTYPEQ3K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGMLTYPEQ4K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGMLTYPEQ5K - "type-1" 5-bit quantization. Same super-block structure as GGMLTYPEQ4K resulting in 5.5 bpw
  • GGMLTYPEQ6K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.



Provided files

NameQuant methodBitsSizeMax RAM requiredUse case
emgermanmistralv01.Q2K.ggufQ2_K23.08 GB5.58 GBsmallest, significant quality loss - not recommended for most purposes
emgermanmistralv01.Q3KS.ggufQ3KS33.16 GB5.66 GBvery small, high quality loss
emgermanmistralv01.Q3KM.ggufQ3KM33.52 GB6.02 GBvery small, high quality loss
emgermanmistralv01.Q3KL.ggufQ3KL33.82 GB6.32 GBsmall, substantial quality loss
emgermanmistralv01.Q40.ggufQ4044.11 GB6.61 GBlegacy; small, very high quality loss - prefer using Q3K_M
emgermanmistralv01.Q4KS.ggufQ4KS44.14 GB6.64 GBsmall, greater quality loss
emgermanmistralv01.Q4KM.ggufQ4KM44.37 GB6.87 GBmedium, balanced quality - recommended
emgermanmistralv01.Q50.ggufQ5055.00 GB7.50 GBlegacy; medium, balanced quality - prefer using Q4K_M
emgermanmistralv01.Q5KS.ggufQ5KS55.00 GB7.50 GBlarge, low quality loss - recommended
emgermanmistralv01.Q5KM.ggufQ5KM55.13 GB7.63 GBlarge, very low quality loss - recommended
emgermanmistralv01.Q6K.ggufQ6_K65.94 GB8.44 GBvery large, extremely low quality loss
emgermanmistralv01.Q80.ggufQ8_087.70 GB10.20 GBvery large, extremely low quality loss - not recommended
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.


How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/emgermanmistralv01-GGUF and below it, a specific filename to download, such as: emgermanmistralv01.Q4KM.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/emgermanmistralv01-GGUF emgermanmistralv01.Q4KM.gguf --local-dir . --local-dir-use-symlinks False


More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/emgermanmistralv01-GGUF --local-dir . --local-dir-use-symlinks False --include='Q4Kgguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HFHUBENABLEHFTRANSFER to 1:

HFHUBENABLEHFTRANSFER=1 huggingface-cli download TheBloke/emgermanmistralv01-GGUF emgermanmistralv01.Q4KM.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HFHUBENABLEHFTRANSFER=1 before the download command.



Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 32 -m emgermanmistralv01.Q4KM.gguf --color -c 2048 --temp 0.7 --repeatpenalty 1.1 -n -1 -p "Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model in Python code, using ctransformers

#### First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install ctransformers

Or with CUDA GPU acceleration

pip install ctransformers[cuda]

Or with AMD ROCm GPU acceleration (Linux only)

CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers

Or with Metal GPU acceleration for macOS systems only

CT_METAL=1 pip install ctransformers --no-binary ctransformers

#### Simple ctransformers example code

from ctransformers import AutoModelForCausalLM

Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.

llm = AutoModelForCausalLM.frompretrained("TheBloke/emgermanmistralv01-GGUF", modelfile="emgermanmistralv01.Q4KM.gguf", modeltype="mistral", gpulayers=50)

print(llm("AI is going to"))

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:



Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

  • Patreon: https://patreon.com/TheBlokeAI
  • Ko-Fi: https://ko-fi.com/TheBlokeAI

Special thanks to: Aemon Algiz.

Patreon special mentions: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfiei, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, SX, Cory Kujawski

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.


Original model card: Jan Philipp Harries's EM German Mistral v01

!EM Logo

Please note that the Mistral architecture is very recent and still not supported by all libraries (e.g. AutoGPTQ). In case of any problems, please try a different format/base model.

Table of Contents

  1. Introduction
  2. Links & Demos
- Model Links - Demos
  1. Prompt Format
  2. Example Output
  3. Acknowledgements
  4. Contact
  5. Disclaimer

Introduction

EM German is a Llama2/Mistral/LeoLM-based model family, finetuned on a large dataset of various instructions in German language. The models are optimized for German text, providing proficiency in understanding, generating, and interacting with German language content.

We offer versions based on 7b, 13b and 70b Llama-2, Mistral and LeoLM (Llama-2/Mistral with continued pretraining on German texts) models.

Please find all Informations, Example Outputs, the special RAG prompt format, output examples and eval results for the EM German Model family in our Github Repository. (Deutsche Version)

Links & Demos

Model Links

Should you try only one model version, I strongly recommend the LeoLM Mistral model which offers by far the best combination of performance and computing requirements!

Base ModelHFGPTQGGUFAWQ
Llama2 7bLinkLinkLinkLink
Llama2 13bLinkLinkLinkLink
Llama2 70bLinkLinkLinkLink
Mistral 7bLinkLinkLinkLink
LeoLM 7bLinkLinkLinktbc
LeoLM 13bsoonsoonLinktbc
LeoLM Mistral 7bLinksoonLinktbc

Notes about the different versions:

See also the comparison of example outputs for a comparison of (7b) model capabilities.

If you get unsatisfying results with one or another EM German version, please try a different (and/or larger) model or version for your usecase.

Demos:

You can use some of the models with free google Colab instances (e.g. the 7bn model in 8bit or the 13b model with GPTQ):

Prompt Format

This model follows the Vicuna format without linebreaks (but should work with linebreaks as well). The format is as follows:

Du bist ein hilfreicher Assistent. USER: <instruction> ASSISTANT:

You can swap the standard system prompt for a better suited one (see below for RAG-tasks).

Example Output

Please find a selection of various example outputs for all 7b versions of EM German here.

Prompt:

Erkläre die Bedeutung von drei wesentlichen Elementen der Bilanzierung und des Accountings nach IFRS für Unternehmen, die auf internationaler Ebene tätig sind.

Antwort EM German Leo Mistral 7b:

Die International Financial Reporting Standards (IFRS) sind eine Reihe von internationalen Rechnungslegungsstandards, die von der International Accounting Standards Board (IASB) entwickelt wurden. Sie sollen dazu beitragen, dass Finanzberichte vergleichbar, zuverlässig und relevant sind.

  1. Fair Value: Dieses Konzept ist ein zentraler Bestandteil der IFRS. Es besagt, dass Vermögenswerte und Schulden zum fairen Wert bilanziert werden sollten, was dem Preis entspricht, zu dem sie zwischen Marktteilnehmern gehandelt werden könnten. Dadurch wird sichergestellt, dass das Unternehmen eine genaue Darstellung seiner finanziellen Lage liefert.
  2. Konsolidierung: Die IFRS verlangen von Unternehmen, ihre Finanzergebnisse auf konsolidierter Basis darzustellen. Das bedeutet, dass alle Tochtergesellschaften und verbundenen Unternehmen in die Bilanz des Mutterunternehmens aufgenommen werden. Dadurch wird ein klareres Bild von der finanziellen Situation des Konzerns geschaffen.
  3. Vollständigkeitsprinzip: Die IFRS verlangen von Unternehmen, alle relevanten Informationen offenzulegen. Dies umfasst sowohl positive als auch negative Faktoren, wie zum Beispiel Gewinne und Verluste, Einnahmen und Ausgaben sowie Risiken und Unsicherheiten. Durch dieses Prinzip wird sichergestellt, dass Investoren, Kreditgeber und andere Stakeholder eine umfassende Einschätzung der finanziellen Lage des Unternehmens vornehmen können.

Prompt:

Ein Mensch atmet durchschnittlich 16 Mal pro Minute. Wie oft atmet er an einem Tag?

Antwort EM German Leo Mistral 7b:

Zuerst berechnen wir, wie oft eine Person in einer Stunde atmet. Wir wissen, dass eine Stunde 60 Minuten hat, also:

Atemzüge pro Stunde = Atemfrequenz * Minuten pro Stunde
= 16 Atemzüge pro Minute * 60 Minuten
= 960 Atemzüge

Um herauszufinden, wie viele Atemzüge eine Person an einem Tag macht, müssen wir diese stündliche Rate mit der Anzahl der Stunden an einem Tag multiplizieren, also 24:

Atemzüge pro Tag = Atemzüge pro Stunde * Stunden pro Tag
= 960 Atemzüge * 24 Stunden
= 23.040 Atemzüge

Also macht ein durchschnittlicher Mensch etwa 23.040 Atemzüge an einem Tag.


(For more examples, please visit our Github Repository.)

Acknowledgements:

Many thanks to winglian/caseus for his great work on Axolotl which I used to train the EM mdoels. I am also grateful to Jon Durbin and his Airoboros models and code from which I borrowed many ideas and code snippets.
Additionally many thanks to Björn Plüster and the LeoLM team for the outstanding pretraining work on LeoLM and last but not least many many thanks to TheBloke for the preparation of quantized versions in all formats under the sun.
The 70b model was trained with support of the OVH Cloud Startup Program.

Contact

I you are interested in customized LLMs for business applications, please get in contact with me via my website. I am also always happy about suggestions and feedback.

PS: We are also always interested in support for our startup ellamind, which will offer customized models for business applications in the future (we are currently still in stealth mode). If you use our models for business applications and have advanced needs for specialized capabilities, please get in touch.

Disclaimer:

I am not responsible for the actions of third parties who use this model or the outputs of the model. This model should only be used for research purposes. The original base model license applies and is distributed with the model files.

📂 GGUF File List

📁 Filename 📦 Size ⚡ Download
em_german_mistral_v01.Q2_K.gguf
LFS Q2
2.87 GB Download
em_german_mistral_v01.Q3_K_L.gguf
LFS Q3
3.56 GB Download
em_german_mistral_v01.Q3_K_M.gguf
LFS Q3
3.28 GB Download
em_german_mistral_v01.Q3_K_S.gguf
LFS Q3
2.95 GB Download
em_german_mistral_v01.Q4_0.gguf
Recommended LFS Q4
3.83 GB Download
em_german_mistral_v01.Q4_K_M.gguf
LFS Q4
4.07 GB Download
em_german_mistral_v01.Q4_K_S.gguf
LFS Q4
3.86 GB Download
em_german_mistral_v01.Q5_0.gguf
LFS Q5
4.65 GB Download
em_german_mistral_v01.Q5_K_M.gguf
LFS Q5
4.78 GB Download
em_german_mistral_v01.Q5_K_S.gguf
LFS Q5
4.65 GB Download
em_german_mistral_v01.Q6_K.gguf
LFS Q6
5.53 GB Download
em_german_mistral_v01.Q8_0.gguf
LFS Q8
7.17 GB Download