πŸ“‹ Model Description


license: apache-2.0 language:
  • en
tags:
  • chat
pipeline_tag: text-generation library_name: transformers datasets:
  • anthracite-org/c2logs32kllama3qwen2v1.2nosystem
  • anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
  • anthracite-org/kalo-opus-instruct-3k-filtered-no-system
  • anthracite-org/nopmclaudewritingfixed
  • anthracite-org/kaloopusmisc240827nosystem
  • anthracite-org/kalomiscpart2no_system

!image/png

This repo contains GGUF quants of the model. If you need the original weights, please find them here.

This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.

This model is fine-tuned on top of mistralai/Mistral-Nemo-Instruct-2407.

Prompting

A typical input would look like this:
<s>[INST] SYSTEM MESSAGE
USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]

SillyTavern templates

Below are Instruct and Context templates for use within SillyTavern.

context template

default SillyTavern template works fine



instruct template

default SillyTavern template works fine


Axolotl config

See axolotl config

base_model: mistralai/Mistral-Nemo-Instruct-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hubmodelid: anthracite-org/magnum-v4-12b-r2
hubstrategy: "allcheckpoints"
pushdatasetto_hub:
hfuseauth_token: true

plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
ligerrmsnorm: true
liger_swiglu: true
ligerfusedlinearcrossentropy: true

loadin8bit: false
loadin4bit: false
strict: false

datasets:
- path: anthracite-org/c2logs32kllama3qwen2v1.2no_system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
type: custommistralv3tekken
- path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system
type: custommistralv3tekken
- path: anthracite-org/nopmclaudewriting_fixed
type: custommistralv3tekken
- path: anthracite-org/kaloopusmisc240827no_system
type: custommistralv3tekken
- path: anthracite-org/kalomiscpart2nosystem
type: custommistralv3tekken
#chat_template: chatml
shufflemergeddatasets: true
#defaultsystemmessage: "You are an assistant that responds to the user."
datasetpreparedpath: /workspace/data/magnum-12b-data
valsetsize: 0.0
output_dir: /workspace/data/12b-fft-out

sequence_len: 32768
sample_packing: true
padtosequence_len: true

adapter:
loramodeldir:
lora_r:
lora_alpha:
lora_dropout:
loratargetlinear:
lorafaninfanout:

wandb_project: 12b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-attempt-01
wandblogmodel:

gradientaccumulationsteps: 2
microbatchsize: 1
num_epochs: 2
optimizer: adamwbnb8bit
lr_scheduler: cosine
learning_rate: 0.00001

trainoninputs: false
groupbylength: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
earlystoppingpatience:
resumefromcheckpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
evalsperepoch:
evaltablesize:
evalmaxnew_tokens:
savesperepoch: 2
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>



Credits

We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.

We would also like to thank all members of Anthracite who made this finetune possible.

Datasets

Training

The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.

Built with Axolotl

Safety

...

πŸ“‚ GGUF File List

πŸ“ Filename πŸ“¦ Size ⚑ Download
magnum-v4-12b-Q3_K_L.gguf
LFS Q3
6.11 GB Download
magnum-v4-12b-Q4_K_M.gguf
Recommended LFS Q4
6.96 GB Download
magnum-v4-12b-Q5_K_M.gguf
LFS Q5
8.13 GB Download
magnum-v4-12b-Q6_K.gguf
LFS Q6
9.37 GB Download
magnum-v4-12b-Q8_0.gguf
LFS Q8
12.13 GB Download