π Model Description
license: apache-2.0 base_model: mistralai/Mistral-Nemo-Base-2407 tags:
- generatedfromtrainer
- axolotl
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
Dolphin 2.9.3 Mistral Nemo 12b π¬
This is the llama.cpp gguf conversion of the original model located here:
https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
Curated and trained by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/h3K4XGj2RH

Our appreciation for the sponsors of Dolphin 2.9.3:
- Crusoe Cloud - provided excellent on-demand 8xL40S node
This model is based on mistralai/Mistral-Nemo-Base-2407, and is governed by the apache 2.0 license.
The base model has 128K context, and our finetuning used 8192 sequence length.
Dolphin 2.9.3 uses ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.3 has a variety of instruction following, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.
Evals
TBD
Training
axolotl version: 0.4.1
base_model: /workspace/models/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
loadin8bit: false
loadin4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChatfilteredsharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChatmultilingualsharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/notsamanthanorefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/agentinstructreact_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbenchinstructj1s13kunfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbenchnegativeunfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbenchreact10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbenchtflancot30punfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
adapter: qlora
lora_r: 128
lora_alpha: 16
loramodulestosave: [embedtokens, lm_head]
lora_dropout: 0.05
loratargetlinear: true
unfrozen_parameters:
- ^lmhead.weight$
- ^model.embedtokens.weight$
- inputlayernorm
- model.norm
- postattentionlayernorm
- selfattn.rotary_emb
mlp.down_proj layers
- model.layers.0.mlp.downproj
- model.layers.1.mlp.downproj
- model.layers.4.mlp.downproj
- model.layers.37.mlp.downproj
- model.layers.24.mlp.downproj
- model.layers.2.mlp.downproj
- model.layers.38.mlp.downproj
- model.layers.35.mlp.downproj
- model.layers.25.mlp.downproj
- model.layers.6.mlp.downproj
- model.layers.22.mlp.downproj
- model.layers.23.mlp.downproj
- model.layers.3.mlp.downproj
- model.layers.21.mlp.downproj
- model.layers.5.mlp.downproj
- model.layers.28.mlp.downproj
- model.layers.20.mlp.downproj
- model.layers.26.mlp.downproj
- model.layers.19.mlp.downproj
- model.layers.34.mlp.downproj
mlp.gate_proj layers
- model.layers.2.mlp.gateproj
- model.layers.1.mlp.gateproj
- model.layers.3.mlp.gateproj
- model.layers.5.mlp.gateproj
- model.layers.4.mlp.gateproj
- model.layers.35.mlp.gateproj
- model.layers.36.mlp.gateproj
- model.layers.37.mlp.gateproj
- model.layers.38.mlp.gateproj
- model.layers.34.mlp.gateproj
- model.layers.33.mlp.gateproj
- model.layers.8.mlp.gateproj
- model.layers.32.mlp.gateproj
- model.layers.6.mlp.gateproj
- model.layers.28.mlp.gateproj
- model.layers.26.mlp.gateproj
- model.layers.30.mlp.gateproj
- model.layers.23.mlp.gateproj
- model.layers.29.mlp.gateproj
- model.layers.27.mlp.gateproj
mlp.up_proj layers
- model.layers.3.mlp.upproj
- model.layers.4.mlp.upproj
- model.layers.6.mlp.upproj
- model.layers.2.mlp.upproj
- model.layers.5.mlp.upproj
- model.layers.8.mlp.upproj
- model.layers.10.mlp.upproj
- model.layers.9.mlp.upproj
- model.layers.7.mlp.upproj
- model.layers.0.mlp.upproj
- model.layers.17.mlp.upproj
- model.layers.15.mlp.upproj
- model.layers.22.mlp.upproj
- model.layers.18.mlp.upproj
- model.layers.16.mlp.upproj
- model.layers.11.mlp.upproj
- model.layers.21.mlp.upproj
- model.layers.23.mlp.upproj
- model.layers.20.mlp.upproj
- model.layers.27.mlp.upproj
selfattn.kproj layers
- model.layers.30.selfattn.kproj
- model.layers.27.selfattn.kproj
- model.layers.25.selfattn.kproj
- model.layers.33.selfattn.kproj
- model.layers.26.selfattn.kproj
- model.layers.31.selfattn.kproj
- model.layers.35.selfattn.kproj
- model.layers.39.selfattn.kproj
- model.layers.22.selfattn.kproj
- model.layers.24.selfattn.kproj
- model.layers.21.selfattn.kproj
- model.layers.28.selfattn.kproj
- model.layers.23.selfattn.kproj
- model.layers.36.selfattn.kproj
- model.layers.20.selfattn.kproj
- model.layers.37.selfattn.kproj
- model.layers.29.selfattn.kproj
- model.layers.32.selfattn.kproj
- model.layers.16.selfattn.kproj
- model.layers.18.selfattn.kproj
selfattn.oproj layers
- model.layers.7.selfattn.oproj
- model.layers.6.selfattn.oproj
- model.layers.9.selfattn.oproj
- model.layers.5.selfattn.oproj
- model.layers.27.selfattn.oproj
- model.layers.26.selfattn.oproj
- model.layers.4.selfattn.oproj
- model.layers.31.selfattn.oproj
- model.layers.8.selfattn.oproj
- model.layers.16.selfattn.oproj
- model.layers.3.selfattn.oproj
- model.layers.10.selfattn.oproj
- model.layers.18.selfattn.oproj
- model.layers.33.selfattn.oproj
- model.layers.17.selfattn.oproj
- model.layers.32.selfattn.oproj
- model.layers.30.selfattn.oproj
- model.layers.2.selfattn.oproj
- model.layers.15.selfattn.oproj
- model.layers.11.selfattn.oproj
selfattn.qproj layers
- model.layers.14.selfattn.qproj
- model.layers.11.selfattn.qproj
- model.layers.15.selfattn.qproj
- model.layers.9.selfattn.qproj
- model.layers.8.selfattn.qproj
- model.layers.18.selfattn.qproj
- model.layers.12.selfattn.qproj
- model.layers.13.selfattn.qproj
- model.layers.19.selfattn.qproj
- model.layers.16.selfattn.qproj
- model.layers.10.selfattn.qproj
- model.layers.17.selfattn.qproj
- model.layers.7.selfattn.qproj
- model.layers.5.selfattn.qproj
- model.layers.20.selfattn.qproj
- model.layers.3.selfattn.qproj
- model.layers.26.selfattn.qproj
- model.layers.27.selfattn.qproj
- model.layers.28.selfattn.qproj
- model.layers.33.selfattn.qproj
selfattn.vproj layers
- model.layers.27.selfattn.vproj
- model.layers.20.selfattn.vproj
- model.layers.24.selfattn.vproj
- model.layers.25.selfattn.vproj
- model.layers.30.selfattn.vproj
- model.layers.2.selfattn.vproj
- model.layers.23.selfattn.vproj
- model.layers.22.selfattn.vproj
- model.layers.26.selfattn.vproj
- model.layers.33.selfattn.vproj
- model.layers.37.selfattn.vproj
- model.layers.7.selfattn.vproj
- model.layers.4.selfattn.vproj
- model.layers.18.selfattn.vproj
- model.layers.31.selfattn.vproj
- model.layers.17.selfattn.vproj
- model.layers.35.selfattn.vproj
- model.layers.32.selfattn.vproj
- model.layers.21.selfattn.vproj
- model.layers.3.selfattn.vproj
datasetpreparedpath: /workspace/axolotl/dolph-2.9.3-nemo-prepared
valsetsize: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-nemo
sequence_len: 8192
sample_packing: true
padtosequence_len: true
wandb_project: dolphin-2.9.3-Mistral-nemo
wandb_watch:
wandbrunid:
wandblogmodel:
gradientaccumulationsteps: 16
microbatchsize: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
trainoninputs: false
groupbylength: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradientcheckpointingkwargs:
use_reentrant: false
earlystoppingpatience:
resumefromcheckpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evalsperepoch: 4
evaltablesize:
savesperepoch: 1
savetotallimit: 2
save_steps:
debug:
deepspeed: deepspeedconfigs/zero3bf16.json
weight_decay: 0.1
special_tokens:
eostoken: "<|imend|>"
pad_token: "<pad>"
bos_token: "<s>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdplimitall_gathers: true
fsdpsyncmodule_states: true
fsdpoffloadparams: true
fsdpuseorig_params: false
fsdpcpuramefficientloading: true
fsdptransformerlayerclsto_wrap: MixtralSparseMoeBlock
fsdpstatedicttype: FULLSTATE_DICT
fsdpautowrappolicy: TRANSFORMERBASED_WRAP
fsdpshardingstrategy: FULL_SHARD
fsdpforwardprefetch: false
fsdpbackwardprefetch: BACKWARD_PRE
workspace/axolotl/dolphin-2.9.3-mistral-nemo
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5605
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learningrate: 5e-06
- trainbatchsize: 1
- evalbatchsize: 1
- seed: 42
- distributedtype: multi-GPU
- numdevices: 8
- gradientaccumulationsteps: 16
- totaltrainbatchsize: 128
- totalevalbatchsize: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lrschedulertype: cosine
- lrschedulerwarmupsteps: 100
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.5691 | 1.0162 | 983 | 0.5734 |
| 0.5335 | 2.0174 | 1968 | 0.5609 |
| 0.5297 | 2.9639 | 2901 | 0.5605 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
Updated GGUF conversions were provided by KoboldAI
π GGUF File List
| π Filename | π¦ Size | β‘ Download |
|---|---|---|
|
dolphin-2.9.3-mistral-nemo-12b.F16.gguf
LFS
FP16
|
22.82 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q2_K.gguf
LFS
Q2
|
4.46 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q3_K_L.gguf
LFS
Q3
|
6.11 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q3_K_M.gguf
LFS
Q3
|
5.67 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q3_K_S.gguf
LFS
Q3
|
5.15 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q4_0.gguf
Recommended
LFS
Q4
|
6.59 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q4_1.gguf
LFS
Q4
|
7.26 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q4_K_M.gguf
LFS
Q4
|
6.96 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q4_K_S.gguf
LFS
Q4
|
6.63 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q5_0.gguf
LFS
Q5
|
7.93 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q5_1.gguf
LFS
Q5
|
8.61 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q5_K_M.gguf
LFS
Q5
|
8.13 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q5_K_S.gguf
LFS
Q5
|
7.93 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q6_K.gguf
LFS
Q6
|
9.37 GB | Download |
|
dolphin-2.9.3-mistral-nemo-12b.Q8_0.gguf
LFS
Q8
|
12.13 GB | Download |