π Model Description
license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags:
- generatedfromtrainer
- cognitivecomputations/Dolphin-2.9
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- mlabonne/FineTome-100k
- arcee/agent_data
- PawanKrd/math-gpt-4o-200k
- cognitivecomputations/SystemChat-2.0
Dolphin 2.9.4 Llama 3.1 8b π¬
This is the GGUF conversion, for use with llama.cpp, ollama, lmstudio etc.
Curated and trained by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/h3K4XGj2RH

Our appreciation for the sponsors of Dolphin 2.9.4:
- Crusoe Cloud - provided excellent on-demand 8xL40S node
This model is based on Meta Llama 3.1 8b, and is governed by the Llama 3.1 license.
The base model has 128K context, and our finetuning used 8192 sequence length.
Dolphin 2.9.4 uses ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.4 has a variety of instruction following, conversational, and coding skills. It also has agentic abilities and supports function calling.
It is especially trained to obey the system prompt, and follow instructions in many languages.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Evals
hf (pretrained=/workspace/axolotl/dolphin-2.9.4-llama3.1-8b-hf,dtype=bfloat16), genkwargs: (None), limit: None, numfewshot: None, batch_size: auto (4)
Tasks Version Filter n-shot Metric Value Stderr
leaderboard N/A none 0 acc β 0.2926 Β± 0.0041 none 0 acc_norm β 0.4513 Β± 0.0053 none 0 exact_match β 0.0982 Β± 0.0079 none 0 instlevelloose_acc β 0.3825 Β± N/A none 0 instlevelstrict_acc β 0.3597 Β± N/A none 0 promptlevelloose_acc β 0.2421 Β± 0.0184 none 0 promptlevelstrict_acc β 0.2181 Β± 0.0178 - leaderboardbbh N/A none 3 accnorm β 0.4931 Β± 0.0061 - leaderboardbbhbooleanexpressions 0 none 3 accnorm β 0.8000 Β± 0.0253 - leaderboardbbhcausaljudgement 0 none 3 accnorm β 0.5615 Β± 0.0364 - leaderboardbbhdateunderstanding 0 none 3 accnorm β 0.4520 Β± 0.0315 - leaderboardbbhdisambiguationqa 0 none 3 accnorm β 0.6640 Β± 0.0299 - leaderboardbbhformalfallacies 0 none 3 accnorm β 0.5600 Β± 0.0315 - leaderboardbbhgeometricshapes 0 none 3 accnorm β 0.3640 Β± 0.0305 - leaderboardbbhhyperbaton 0 none 3 acc_norm β 0.6320 Β± 0.0306 - leaderboardbbhlogicaldeductionfiveobjects 0 none 3 accnorm β 0.4600 Β± 0.0316 - leaderboardbbhlogicaldeductionsevenobjects 0 none 3 accnorm β 0.4360 Β± 0.0314 - leaderboardbbhlogicaldeductionthreeobjects 0 none 3 accnorm β 0.6160 Β± 0.0308 - leaderboardbbhmovierecommendation 0 none 3 accnorm β 0.7880 Β± 0.0259 - leaderboardbbhnavigate 0 none 3 acc_norm β 0.5200 Β± 0.0317 - leaderboardbbhobjectcounting 0 none 3 accnorm β 0.4520 Β± 0.0315 - leaderboardbbhpenguinsinatable 0 none 3 accnorm β 0.5205 Β± 0.0415 - leaderboardbbhreasoningaboutcoloredobjects 0 none 3 accnorm β 0.5120 Β± 0.0317 - leaderboardbbhruinnames 0 none 3 accnorm β 0.6320 Β± 0.0306 - leaderboardbbhsalienttranslationerrordetection 0 none 3 accnorm β 0.4320 Β± 0.0314 - leaderboardbbhsnarks 0 none 3 acc_norm β 0.5843 Β± 0.0370 - leaderboardbbhsportsunderstanding 0 none 3 accnorm β 0.7040 Β± 0.0289 - leaderboardbbhtemporalsequences 0 none 3 accnorm β 0.1440 Β± 0.0222 - leaderboardbbhtrackingshuffledobjectsfiveobjects 0 none 3 acc_norm β 0.1560 Β± 0.0230 - leaderboardbbhtrackingshuffledobjectssevenobjects 0 none 3 acc_norm β 0.1320 Β± 0.0215 - leaderboardbbhtrackingshuffledobjectsthreeobjects 0 none 3 acc_norm β 0.2840 Β± 0.0286 - leaderboardbbhweboflies 0 none 3 acc_norm β 0.4840 Β± 0.0317 - leaderboardgpqa N/A none 0 accnorm β 0.2903 Β± 0.0132 - leaderboardgpqadiamond 1 none 0 acc_norm β 0.2980 Β± 0.0326 - leaderboardgpqaextended 1 none 0 acc_norm β 0.2839 Β± 0.0193 - leaderboardgpqamain 1 none 0 acc_norm β 0.2946 Β± 0.0216 - leaderboardifeval 2 none 0 instlevellooseacc β 0.3825 Β± N/A none 0 instlevelstrict_acc β 0.3597 Β± N/A none 0 promptlevelloose_acc β 0.2421 Β± 0.0184 none 0 promptlevelstrict_acc β 0.2181 Β± 0.0178 - leaderboardmathalgebrahard 1 none 4 exactmatch β 0.1596 Β± 0.0209 - leaderboardmathcountingandprobhard 1 none 4 exactmatch β 0.0488 Β± 0.0195 - leaderboardmathgeometryhard 1 none 4 exactmatch β 0.0530 Β± 0.0196 - leaderboardmathhard N/A none 4 exact_match β 0.0982 Β± 0.0079 - leaderboardmathintermediatealgebrahard 1 none 4 exact_match β 0.0143 Β± 0.0071 - leaderboardmathnumtheoryhard 1 none 4 exact_match β 0.0455 Β± 0.0168 - leaderboardmathprealgebrahard 1 none 4 exactmatch β 0.2591 Β± 0.0316 - leaderboardmathprecalculushard 1 none 4 exactmatch β 0.0519 Β± 0.0192 - leaderboardmmlupro 0.1 none 5 acc β 0.2926 Β± 0.0041 - leaderboardmusr N/A none 0 accnorm β 0.3862 Β± 0.0173 - leaderboardmusrmurdermysteries 1 none 0 accnorm β 0.5280 Β± 0.0316 - leaderboardmusrobjectplacements 1 none 0 accnorm β 0.3594 Β± 0.0300 - leaderboardmusrteamallocation 1 none 0 accnorm β 0.2720 Β± 0.0282
Groups Version Filter n-shot Metric Value Stderr
leaderboard N/A none 0 acc β 0.2926 Β± 0.0041 none 0 acc_norm β 0.4513 Β± 0.0053 none 0 exact_match β 0.0982 Β± 0.0079 none 0 instlevelloose_acc β 0.3825 Β± N/A none 0 instlevelstrict_acc β 0.3597 Β± N/A none 0 promptlevelloose_acc β 0.2421 Β± 0.0184 none 0 promptlevelstrict_acc β 0.2181 Β± 0.0178 - leaderboardbbh N/A none 3 accnorm β 0.4931 Β± 0.0061 - leaderboardgpqa N/A none 0 accnorm β 0.2903 Β± 0.0132 - leaderboardmathhard N/A none 4 exact_match β 0.0982 Β± 0.0079 - leaderboardmusr N/A none 0 accnorm β 0.3862 Β± 0.0173
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
loadin8bit: false
loadin4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.4/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
adapter: qlora
lora_r: 128
lora_alpha: 16
loramodulestosave: [embedtokens, lm_head]
lora_dropout: 0.05
loratargetlinear: true
unfrozen_parameters:
- inputlayernorm
- model.norm
- postattentionlayernorm
- selfattn.rotaryemb
- ^lmhead.weight$
- ^model.embed_tokens.weight$
mlp.down_proj layers
- model.layers.1.mlp.downproj
- model.layers.0.mlp.downproj
- model.layers.30.mlp.downproj
- model.layers.2.mlp.downproj
- model.layers.21.mlp.downproj
- model.layers.22.mlp.downproj
- model.layers.29.mlp.downproj
- model.layers.5.mlp.downproj
- model.layers.4.mlp.downproj
- model.layers.20.mlp.downproj
- model.layers.23.mlp.downproj
- model.layers.19.mlp.downproj
- model.layers.3.mlp.downproj
- model.layers.17.mlp.downproj
- model.layers.6.mlp.downproj
- model.layers.31.mlp.downproj
mlp.up_proj layers
- model.layers.4.mlp.upproj
- model.layers.3.mlp.upproj
- model.layers.0.mlp.upproj
- model.layers.5.mlp.upproj
- model.layers.7.mlp.upproj
- model.layers.6.mlp.upproj
- model.layers.2.mlp.upproj
- model.layers.1.mlp.upproj
- model.layers.8.mlp.upproj
- model.layers.12.mlp.upproj
- model.layers.14.mlp.upproj
- model.layers.9.mlp.upproj
- model.layers.15.mlp.upproj
- model.layers.17.mlp.upproj
- model.layers.13.mlp.upproj
- model.layers.19.mlp.upproj
selfattn.kproj layers
- model.layers.29.selfattn.kproj
- model.layers.25.selfattn.kproj
- model.layers.23.selfattn.kproj
- model.layers.28.selfattn.kproj
- model.layers.21.selfattn.kproj
- model.layers.19.selfattn.kproj
- model.layers.22.selfattn.kproj
- model.layers.20.selfattn.kproj
- model.layers.24.selfattn.kproj
- model.layers.31.selfattn.kproj
- model.layers.27.selfattn.kproj
- model.layers.26.selfattn.kproj
- model.layers.17.selfattn.kproj
- model.layers.11.selfattn.kproj
- model.layers.18.selfattn.kproj
- model.layers.14.selfattn.kproj
selfattn.oproj layers
- model.layers.14.selfattn.oproj
- model.layers.7.selfattn.oproj
- model.layers.5.selfattn.oproj
- model.layers.11.selfattn.oproj
- model.layers.6.selfattn.oproj
- model.layers.24.selfattn.oproj
- model.layers.9.selfattn.oproj
- model.layers.13.selfattn.oproj
- model.layers.10.selfattn.oproj
- model.layers.12.selfattn.oproj
- model.layers.8.selfattn.oproj
- model.layers.25.selfattn.oproj
- model.layers.21.selfattn.oproj
- model.layers.23.selfattn.oproj
- model.layers.15.selfattn.oproj
- model.layers.16.selfattn.oproj
selfattn.qproj layers
- model.layers.8.selfattn.qproj
- model.layers.13.selfattn.qproj
- model.layers.9.selfattn.qproj
- model.layers.14.selfattn.qproj
- model.layers.10.selfattn.qproj
- model.layers.11.selfattn.qproj
- model.layers.0.selfattn.qproj
- model.layers.15.selfattn.qproj
- model.layers.1.selfattn.qproj
- model.layers.6.selfattn.qproj
- model.layers.5.selfattn.qproj
- model.layers.7.selfattn.qproj
- model.layers.12.selfattn.qproj
- model.layers.16.selfattn.qproj
- model.layers.17.selfattn.qproj
- model.layers.26.selfattn.qproj
selfattn.vproj layers
- model.layers.26.selfattn.vproj
- model.layers.17.selfattn.vproj
- model.layers.3.selfattn.vproj
- model.layers.28.selfattn.vproj
- model.layers.29.selfattn.vproj
- model.layers.21.selfattn.vproj
- model.layers.15.selfattn.vproj
- model.layers.16.selfattn.vproj
- model.layers.20.selfattn.vproj
- model.layers.25.selfattn.vproj
- model.layers.6.selfattn.vproj
- model.layers.23.selfattn.vproj
- model.layers.4.selfattn.vproj
- model.layers.1.selfattn.vproj
- model.layers.22.selfattn.vproj
- model.layers.14.selfattn.vproj
mlp.gate_proj layers
- model.layers.1.mlp.gateproj
- model.layers.2.mlp.gateproj
- model.layers.3.mlp.gateproj
- model.layers.4.mlp.gateproj
- model.layers.0.mlp.gateproj
- model.layers.25.mlp.gateproj
- model.layers.26.mlp.gateproj
- model.layers.5.mlp.gateproj
- model.layers.24.mlp.gateproj
- model.layers.28.mlp.gateproj
- model.layers.23.mlp.gateproj
- model.layers.27.mlp.gateproj
- model.layers.21.mlp.gateproj
- model.layers.22.mlp.gateproj
- model.layers.29.mlp.gateproj
- model.layers.20.mlp.gateproj
datasetpreparedpath: /workspace/axolotl/dolph-2.9.4-nemo-prepared
valsetsize: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.4-llama3.1-8b
sequence_len: 8192
sample_packing: true
padtosequence_len: true
wandb_project: dolphin-2.9.4-llama3.1-8b
wandb_watch:
wandbrunid:
wandblogmodel:
gradientaccumulationsteps: 16
microbatchsize: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
trainoninputs: false
groupbylength: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradientcheckpointingkwargs:
use_reentrant: false
earlystoppingpatience:
resumefromcheckpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evalsperepoch: 4
evaltablesize:
savesperepoch: 1
savetotallimit: 2
save_steps:
debug:
deepspeed: deepspeedconfigs/zero3bf16.json
weight_decay: 0.1
special_tokens:
eostoken: "<|imend|>"
bostoken: "<|beginof_text|>"
padtoken: "<|finetunerightpadid|>"
tokens:
- "<|im_start|>"
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdplimitall_gathers: true
fsdpsyncmodule_states: true
fsdpoffloadparams: true
fsdpuseorig_params: false
fsdpcpuramefficientloading: true
fsdptransformerlayerclsto_wrap: MixtralSparseMoeBlock
fsdpstatedicttype: FULLSTATE_DICT
fsdpautowrappolicy: TRANSFORMERBASED_WRAP
fsdpshardingstrategy: FULL_SHARD
fsdpforwardprefetch: false
fsdpbackwardprefetch: BACKWARD_PRE
workspace/axolotl/dolphin-2.9.4-llama3.1-8b
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learningrate: 5e-06
- trainbatchsize: 2
- evalbatchsize: 2
- seed: 42
- distributedtype: multi-GPU
- numdevices: 8
- gradientaccumulationsteps: 16
- totaltrainbatchsize: 256
- totalevalbatchsize: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lrschedulertype: cosine
- lrschedulerwarmupsteps: 100
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.5837 | 1.0180 | 1161 | 0.5814 |
| 0.5525 | 2.0179 | 2322 | 0.5671 |
| 0.5514 | 2.9624 | 3420 | 0.5655 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
π GGUF File List
| π Filename | π¦ Size | β‘ Download |
|---|---|---|
|
dolphin-2.9.4-llama3.1-8b-Q2_K.gguf
LFS
Q2
|
2.96 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q3_K_L.gguf
LFS
Q3
|
4.03 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q3_K_M.gguf
LFS
Q3
|
3.74 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q3_K_S.gguf
LFS
Q3
|
3.41 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q4_0.gguf
Recommended
LFS
Q4
|
4.34 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q4_K_M.gguf
LFS
Q4
|
4.58 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q4_K_S.gguf
LFS
Q4
|
4.37 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q5_0.gguf
LFS
Q5
|
5.21 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q5_K_M.gguf
LFS
Q5
|
5.34 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q5_K_S.gguf
LFS
Q5
|
5.21 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q6_K.gguf
LFS
Q6
|
6.14 GB | Download |
|
dolphin-2.9.4-llama3.1-8b-Q8_0.gguf
LFS
Q8
|
7.95 GB | Download |