π Model Description
license: mit base_model:
- moonshotai/Kimi-Dev-72B
- code
- unsloth
- swebench
- software
- issue-resolving
Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading quants.
We introduce Kimi-Dev-72B, our new open-source coding LLM for software engineering tasks. Kimi-Dev-72B achieves a new state-of-the-art on SWE-bench Verified among open-source models.
- Kimi-Dev-72B achieves 60.4% performance on SWE-bench Verified. It surpasses the runner-up, setting a new state-of-the-art result among open-source models.
- Kimi-Dev-72B is optimized via large-scale reinforcement learning. It autonomously patches real repositories in Docker and gains rewards only when the entire test suite passes. This ensures correct and robust solutions, aligning with real-world development standards.
- Kimi-Dev-72B is available for download and deployment on Hugging Face and GitHub. We welcome developers and researchers to explore its capabilities and contribute to development.

Performance of Open-source Models on SWE-bench Verified.
Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "moonshotai/Kimi-Dev-72B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.frompretrained(modelname)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.applychattemplate(
messages,
tokenize=False,
addgenerationprompt=True
)
modelinputs = tokenizer([text], returntensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs,
maxnewtokens=512
)
generated_ids = [
outputids[len(inputids):] for inputids, outputids in zip(modelinputs.inputids, generated_ids)
]
response = tokenizer.batchdecode(generatedids, skipspecialtokens=True)[0]
Citation
@misc{kimidev72b_2025,
title = {Introducing Kimi-Dev: A Strong and Open-source Coding LLM for Issue Resolution},
author = {{Kimi-Dev Team}},
year = {2025},
month = {June},
url = {\url{https://www.moonshot.cn/Kimi-Dev}}
}
π GGUF File List
| π Filename | π¦ Size | β‘ Download |
|---|---|---|
|
Kimi-Dev-72B-IQ4_NL.gguf
LFS
Q4
|
38.48 GB | Download |
|
Kimi-Dev-72B-IQ4_XS.gguf
LFS
Q4
|
37.02 GB | Download |
|
Kimi-Dev-72B-Q3_K_M.gguf
LFS
Q3
|
35.11 GB | Download |
|
Kimi-Dev-72B-Q3_K_S.gguf
LFS
Q3
|
32.12 GB | Download |
|
Kimi-Dev-72B-Q4_0.gguf
Recommended
LFS
Q4
|
38.54 GB | Download |
|
Kimi-Dev-72B-Q4_1.gguf
LFS
Q4
|
42.56 GB | Download |
|
Kimi-Dev-72B-UD-IQ1_M.gguf
LFS
|
22.35 GB | Download |
|
Kimi-Dev-72B-UD-IQ1_S.gguf
LFS
|
21.47 GB | Download |
|
Kimi-Dev-72B-UD-IQ2_M.gguf
LFS
Q2
|
27.56 GB | Download |
|
Kimi-Dev-72B-UD-IQ2_XXS.gguf
LFS
Q2
|
23.94 GB | Download |
|
Kimi-Dev-72B-UD-IQ3_XXS.gguf
LFS
Q3
|
29.67 GB | Download |
|
Kimi-Dev-72B-UD-Q2_K_XL.gguf
LFS
Q2
|
28.25 GB | Download |
|
Kimi-Dev-72B-UD-Q3_K_XL.gguf
LFS
Q3
|
35.67 GB | Download |
