πŸ“‹ Model Description


tags:
  • unsloth
base_model:
  • HuggingFaceTB/SmolLM3-3B
library_name: transformers license: apache-2.0 language:
  • en
  • fr
  • es
  • it
  • pt
  • zh
  • ar
  • ru

[!NOTE]

Includes our chat template fixes!
If you are using llama.cpp, use --jinja

>



Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading quants.



SmolLM3

!image/png

Table of Contents

  1. Model Summary
  2. How to use
  3. Evaluation
  4. Training
  5. Limitations
  6. License

Model Summary

SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.

!image/png

The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Key features

  • Instruct model optimized for hybrid reasoning
  • Fully open model: open weights + full training details including public data mixture and training configs
  • Long context: Trained on 64k context and suppots up to 128k tokens using YARN extrapolation
  • Multilingual: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)

For more details refer to our blog post: https://hf.co/blog/smollm3

How to use

The modeling code for SmolLM3 is available in transformers v4.53.0, so make sure to upgrade your transformers version. You can also load the model with the latest vllm which uses transformers as a backend.

pip install -U transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "HuggingFaceTB/SmolLM3-3B"
device = "cuda" # for GPU usage or "cpu" for CPU usage

load the tokenizer and the model

tokenizer = AutoTokenizer.frompretrained(modelname) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device)

prepare the model input

prompt = "Give me a brief explanation of gravity in simple terms." messages_think = [ {"role": "user", "content": prompt} ]

text = tokenizer.applychattemplate(
messages_think,
tokenize=False,
addgenerationprompt=True,
)
modelinputs = tokenizer([text], returntensors="pt").to(model.device)

Generate the output

generatedids = model.generate(modelinputs, maxnewtokens=32768)

Get and decode the output

outputids = generatedids[0][len(modelinputs.inputids[0]) :] print(tokenizer.decode(outputids, skipspecial_tokens=True))

>[!TIP]

We recommend setting temperature=0.6 and top_p=0.95 in the sampling parameters.

Enabling and Disabling Extended Thinking Mode

We enable extended thinking by default, so the example above generates the output with a reasoning trace. For choosing between enabling, you can provide the /think and /nothink flags through the system prompt as shown in the snippet below for extended thinking disabled. The code for generating the response with extended thinking would be the same except that the system prompt should have /think instead of /nothink.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "system", "content": "/no_think"},
    {"role": "user", "content": prompt}
]

text = tokenizer.applychattemplate(
messages,
tokenize=False,
addgenerationprompt=True,
)

We also provide the option of specifying the whether to use extended thinking through the enablethinking kwarg as in the example below. You do not need to set the /nothink or /think flags through the system prompt if using the kwarg, but keep in mind that the flag in the system prompt overwrites the setting in the kwarg.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "user", "content": prompt}
]

text = tokenizer.applychattemplate(
messages,
tokenize=False,
addgenerationprompt=True,
enable_thinking=False
)

Agentic Usage

SmolLM3 supports tool calling!
Just pass your list of tools:

  • Under the argument xmltools for standard tool-calling: these tools will be called as JSON blobs within XML tags, like call>{"name": "getweather", "arguments": {"city": "Copenhagen"}}call>
  • Or under pythontools: then the model will call tools like python functions in a snippet, like getweather(city="Copenhagen")

from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "HuggingFaceTB/SmolLM3-3B"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)

tools = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]

messages = [
{
"role": "user",
"content": "Hello! How is the weather today in Copenhagen?"
}
]

inputs = tokenizer.applychattemplate(
messages,
enable_thinking=False, # True works as well, your choice!
xml_tools=tools,
addgenerationprompt=True,
tokenize=True,
return_tensors="pt"
)

outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Using Custom System Instructions.

You can specify custom instruction through the system prompt while controlling whether to use extended thinking. For example, the snippet below shows how to make the model speak like a pirate while enabling extended thinking.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "system", "content": "Speak like a pirate./think"},
    {"role": "user", "content": prompt}
]

text = tokenizer.applychattemplate(
messages,
tokenize=False,
addgenerationprompt=True,
)

For local inference, you can use llama.cpp, ONNX, MLX and MLC. You can find quantized checkpoints in this collection (https://huggingface.co/collections/HuggingFaceTB/smollm3-686d33c1fdffe8e635317e23)

vLLM and SGLang

You can use vLLM and SGLang to deploy the model in an API compatible with OpenAI format.

#### SGLang

python -m sglang.launch_server --model-path HuggingFaceTB/SmolLM3-3B

#### vLLM

vllm serve HuggingFaceTB/SmolLM3-3B

#### Setting chattemplatekwargs

You can specify chattemplatekwargs such as enablethinking and xmltools to a deployed model by passing the chattemplatekwargs parameter in the API request.

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "HuggingFaceTB/SmolLM3-3B",
  "messages": [
    {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}
  ],
  "temperature": 0.6,
  "top_p": 0.95,
  "max_tokens": 16384,
  "chattemplatekwargs": {"enable_thinking": false}
}'

Evaluation

In this section, we report the evaluation results of SmolLM3 model. All evaluations are zero-shot unless stated otherwise, and we use lighteval to run them.

We highlight the best score in bold and underline the second-best score.

Instruction Model

#### No Extended Thinking
Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.




CategoryMetricSmoLLM3-3BQwen2.5-3BLlama3.1-3BQwen3-1.7BQwen3-4B
High school math competitionAIME 20259.32.90.38.017.1
Math problem-solvingGSM-Plus72.874.159.268.382.1
Competitive programmingLiveCodeBench v415.210.53.415.024.9
Graduate-level reasoningGPQA Diamond35.732.229.431.844.4
Instruction followingIFEval76.765.671.674.068.9
AlignmentMixEval Hard26.927.624.924.331.6
Tool CallingBFCL92.3-92.3 *89.595.0
Multilingual Q&AGlobal MMLU53.550.5446.849.565.1

(*): this is a tool calling finetune

#### Extended Thinking
Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:




CategoryMetricSmoLLM3-3BQwen3-1.7BQwen3-4B
High school math competitionAIME 202536.730.758.8
Math problem-solvingGSM-Plus83.479.488.2
Competitive programmingLiveCodeBench v430.034.452.9
Graduate-level reasoningGPQA Diamond41.739.955.3
Instruction followingIFEval71.274.285.4
AlignmentMixEval Hard30.833.938.0
Tool CallingBFCL88.888.895.5
Multilingual Q&AGlobal MMLU64.162.373.3

Base Pre-Trained Model

#### English benchmarks
Note: All evaluations are zero-shot unless stated otherwise. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.

CategoryMetricSmolLM3-3BQwen2.5-3BLlama3-3.2BQwen3-1.7B-BaseQwen3-4B-Base
Reasoning & CommonsenseHellaSwag76.1574.1975.5260.5274.37
ARC-CF (Average)65.6159.8158.5855.8862.11
Winogrande58.8861.4158.7257.0659.59
CommonsenseQA55.2849.1460.6048.9852.99
Knowledge & UnderstandingMMLU-CF (Average)44.1342.9341.3239.1147.65
| | MMLU Pro CF | 19.61 | 16.66 | 16.42 | 18.04 | 24.92 | | | MMLU Pro MCF | 32.70 | 31.32 | 25.07 | 30.39 | 41.07 | | | PIQA | 78.89 | 78.35 | 78.51 | 75.35 | 77.58 | | | OpenBookQA | 40.60 | 40.20 | 42.00 | 36.40 | 42.40 | | | BoolQ | 78.99 | 73.61 | 75.33 | 74.46 | 74.28 | | Math & Code | | | | | | | | Coding & math | HumanEval+ | 30.48 | 34.14| 25.00 | 43.29| 54.87 | | | MBPP+ | 52.91 | 52.11 | 38.88| 59.25 | 63.75 | | | MATH (4-shot) | 46.10 | 40.10 | 7.44 | 41.64 | 51.20 | | | GSM8k (5-shot) | 67.63 | 70.13 | 25.92 | 65.88 | 74.14 | | Long context | | | | | | | | | Ruler 32k | 76.35 | 75.93 | 77.58 | 70.63 | 83.98 | | | Ruler 64k | 67.85 | 64.90 | 72.93 | 57.18 | 60.29 | | | Ruler 128k | 61.03 | 62.23 | 71.30 | 43.03 | 47.23 |

#### Multilingual benchmarks

CategoryMetricSmolLM3 3B BaseQwen2.5-3BLlama3.2 3BQwen3 1.7B BaseQwen3 4B Base
Main supported languages
FrenchMLMM Hellaswag63.9457.4757.6651.2661.00
Belebele51.0051.5549.2249.4455.00
Global MMLU (CF)38.3734.2233.7134.9441.80
Flores-200 (5-shot)62.8561.3862.8958.6865.76
SpanishMLMM Hellaswag65.8558.2559.3952.4061.85
Belebele47.0048.8847.0047.5650.33
Global MMLU (CF)38.5135.8435.6034.7941.22
Flores-200 (5-shot)48.2550.0044.4546.9350.16
GermanMLMM Hellaswag59.5649.9953.1946.1056.43
Belebele48.4447.8846.2248.0053.44
Global MMLU (CF)35.1033.1932.6032.7338.70
Flores-200 (5-shot)56.6050.6354.9552.5850.48
ItalianMLMM Hellaswag62.4953.2154.9648.7258.76
Belebele46.4444.7743.8844.0048.7844.88
Global MMLU (CF)36.9933.9132.7935.3739.26
Flores-200 (5-shot)52.6554.8748.8348.3749.11
PortugueseMLMM Hellaswag63.2257.3856.8450.7359.89
Belebele47.6749.2245.0044.0050.0049.00
Global MMLU (CF)36.8834.7233.0535.2640.66
Flores-200 (5-shot)60.9357.6854.2856.5863.43
The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.
CategoryMetricSmolLM3 3B BaseQwen2.5-3BLlama3.2 3BQwen3 1.7B BaseQwen3 4B Base
Other supported languages
ArabicBelebele40.2244.2245.3342.3351.78
Global MMLU (CF)28.5728.8127.6729.3731.85
Flores-200 (5-shot)40.2239.4444.4335.8239.76
ChineseBelebele43.7844.5649.5648.7853.22
Global MMLU (CF)36.1633.7939.5738.5644.55
Flores-200 (5-shot)29.1733.2131.8925.7032.50
RussianBelebele47.4445.8947.4445.2251.44
Global MMLU (CF)36.5132.4734.5234.8338.80
Flores-200 (5-shot)47.1348.7450.7454.7060.53

Training

Model

  • Architecture: Transformer decoder
  • Pretraining tokens: 11T
  • Precision: bfloat16

Software & hardware

Open resources

Here is an infographic with all the training details
  • The datasets used for pretraining can be found in this collection and those used in mid-training and post-training will be uploaded later
  • The training and evaluation configs and code can be found in the huggingface/smollm repository.

!image/png

Limitations

SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.

License

Apache 2.0

πŸ“‚ GGUF File List

πŸ“ Filename πŸ“¦ Size ⚑ Download
SmolLM3-3B-BF16.gguf
LFS FP16
5.74 GB Download
SmolLM3-3B-IQ4_NL.gguf
LFS Q4
1.69 GB Download
SmolLM3-3B-IQ4_XS.gguf
LFS Q4
1.61 GB Download
SmolLM3-3B-Q2_K.gguf
LFS Q2
1.17 GB Download
SmolLM3-3B-Q2_K_L.gguf
LFS Q2
1.17 GB Download
SmolLM3-3B-Q3_K_M.gguf
LFS Q3
1.46 GB Download
SmolLM3-3B-Q3_K_S.gguf
LFS Q3
1.33 GB Download
SmolLM3-3B-Q4_0.gguf
Recommended LFS Q4
1.69 GB Download
SmolLM3-3B-Q4_1.gguf
LFS Q4
1.85 GB Download
SmolLM3-3B-Q4_K_M.gguf
LFS Q4
1.78 GB Download
SmolLM3-3B-Q4_K_S.gguf
LFS Q4
1.69 GB Download
SmolLM3-3B-Q5_K_M.gguf
LFS Q5
2.06 GB Download
SmolLM3-3B-Q5_K_S.gguf
LFS Q5
2.01 GB Download
SmolLM3-3B-Q6_K.gguf
LFS Q6
2.36 GB Download
SmolLM3-3B-Q8_0.gguf
LFS Q8
3.05 GB Download
SmolLM3-3B-UD-IQ2_M.gguf
LFS Q2
1.07 GB Download
SmolLM3-3B-UD-IQ2_XXS.gguf
LFS Q2
910.91 MB Download
SmolLM3-3B-UD-IQ3_XXS.gguf
LFS Q3
1.2 GB Download
SmolLM3-3B-UD-Q2_K_XL.gguf
LFS Q2
1.2 GB Download
SmolLM3-3B-UD-Q3_K_XL.gguf
LFS Q3
1.5 GB Download
SmolLM3-3B-UD-Q4_K_XL.gguf
LFS Q4
1.81 GB Download
SmolLM3-3B-UD-Q5_K_XL.gguf
LFS Q5
2.06 GB Download
SmolLM3-3B-UD-Q6_K_XL.gguf
LFS Q6
2.57 GB Download
SmolLM3-3B-UD-Q8_K_XL.gguf
LFS Q8
3.63 GB Download